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Abstract

In this paper, we find some superharmonic functions, which relate to the convexity estimates
for Green’s function and the first eigenfunction of Laplace operator with homogeneous
Dirichlet boundary conditions in bounded convex domains of R”.
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1 Introduction

Let £2 be a bounded convex domain in R", n > 2, x, € £2. In this paper, we will con-
sider the convexity estimates of solutions to two elliptic partial differential equations with
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homogeneous Dirichlet boundary conditions. The first one is Green’s function of £2 with
pole at x,, which is the positive solution of the following problem:

{ Au = —8(x —x,) in £2,

u=20 on 052, .1y

where §(x — x,) denotes the Dirac measure at the point x,. And the second one is the first
eigenvalue problem of the Laplace operator:

Au+iu=0 in £,
u=0 onos2, (1.2)
u>0 in £,

where X is the first eigenvalue of the Laplace operator.

In 1920’s, Carathéodory obtained that the level sets of Green’s function in a bounded
convex plane domain are strictly convex by using the methods of conformal mappings.
In 1957, Gabriel [7] proved that the level sets of Green’s function in a bounded convex
three dimensional domain are strictly convex. In 1984 and 1993, from the viewpoint of
probability, Borell [2, 3] proved that Green’s function u of Eq. 1.1 is quasi-concave for

n =2and ﬁ—convex for n > 3, i.e. the level sets of u are convex for n = 2 and uﬁ is
convex forn > 3.

In 2015, Shi [16] obtained a convexity estimate for Green’s function of a bounded convex
domain §2 with pole at x, € £2, and gave the proof of its specific convexity from the
viewpoint of partial differential equations themselves. He proved the following theorem:

Theorem 1.1 [16] Let 2 be a smooth bounded convex domain in R", n > 2, u > 0 the

solution for the problem Eq. 1.1, and v = ¢™**, o > 27w forn =2 orv = uTw forn > 3.

If v is a strictly convex function, then the function

2
Y = 02" det D2v,

that is,
2. 9 det D?u
lpl :a2(detD2u—a Z 8714114]> forn:2,
ij=1 oM
or
1\ s n—1 & ddet D2u
vy = (m> ((—1)”u det D%u + (—1)" — i]z_:l T u,»uj> forn > 3,

satisfies the following elliptic differential inequality:
Ay =0 mod (Vi) in 2\{x,},

where the terms containing the gradient of 1 with locally bounded coefficients are sup-
pressed. Moreover, the function | attains its minimum on the boundary 052, and forn > 3,
the following estimate

n—1

———— min K min [Vu|"*! 1.3
(n — 2y i K mnin |Vl (1.3)

Y1 >
holds, where K is the Gaussian curvature of 952.

Using the convexity estimate Eq. 1.3, Shi [16] combined with the deformation methods
to get a new proof that v is strictly convex in £2\{x,} for n > 3. In this paper, we prove that
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log ¥ is a superharmonic function exactly, which naturally leads to the convexity estimate
Eq. 1.3 from Lemma 2.1 in [16].

Theorem 1.2 Ler 2 be a smooth bounded convex domain in R", n > 2, u > 0 the solution

1
for the problem Eq. 1.1, and v = e™**, a > 2w forn =2 orv =u?" forn > 3. Ifvisa

strictly convex function, then the function
¢1 =log Y =log (1}2*”2 det D2v)
satisfies the following inequality:
App <0 in 2\{x,}.

In 1976, Brascamp-Lieb [5] considered the following initial-boundary value problem for
the heat equation
W = Au,  (x,1) € 2 x (0, +00),
u 0, (x,1) € 982 x (0, +00),

u(x,0) = up(x), x €82,

where §2 is a bounded convex domain in R”, n > 2, u, is a positive function defined in
§2, and u, = 0 on 0S2. They proved that when log u,, is a concave function, logu is also
concave with respect to x for any ¢ > 0. From this, they established the log-concavity of
the first eigenfunction of the Laplace operator for the problem Eq. 1.2 in convex domains.
Korevaar [12] and Caffarelli-Spruck [6] established a maximum principle for a two-point
function to give a new proof on the log-concavity of the first eigenfunction of the Laplace
operator respectively, Borell [4] proved some generalizations still via probability approach.
For the case of dimension two, Acker-Payne-Philippin [1] found the following function

1
P = —[udet D2y + 2uqusuiy — ullu% - uzzu%]
u

which satisfies
APy =0, mod(VP) in£2\{x € 2|O(x) =0},

where ® (x) = 41)122 + (v1] —v)? forv = — log u. Then they obtained a new proof for the

Brascamp-Lieb’s result in two dimensional case. The idea of using the P function to deal

with partial differential equations was originally given by Makar-Limanov. Makar-Limanov

[15] considered the following torsion problem in a bounded convex plane domain 2
{ Au=-2in £,

u=0 on 052. (14)

He introduced an auxiliary function

Py = 2udet D%u + 2uiuruy — unu% — uzzu%,

and proved that P, is an superharmonic function. Then he could obtain that u? is strictly
concave.
Let u be the solution of problem Eq. 1.2, and v = — log u, for the function

Yo = e DV det D%y

n 2
ddetD
= (—D"udetD?u+ (-1 3 Ty,

U
1
ou;j I

i,j=1
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Ma-Shi-Ye [13] proved the following theorem:

Theorem 1.3 [13] Let 2 be a smooth, bounded convex domain in R*, n > 2, and u > 0
the first eigenfunction for the eigenvalue problem Eq. 1.2. If v = —logu is a strictly convex
function, then the function

Yy = e "DV det D2y

satisfies the following elliptic differential inequality:
Ay <0 mod (V) in $2,

where the terms containing the gradient of yry with locally bounded coefficients are sup-

pressed. Moreover, the function Vrp attains its minimum on the boundary 052, and the
following estimate

> min K min |Vu|""! 1.5

Yo = nin K mir [Vul (1.5)

holds, where K is the Gaussian curvature of 952.

Using the convexity estimate Eq. 1.5 and combining the deformation methods they gave
a new proof for the Brascamp-Lieb’s result in high dimensional case. In this paper, we get
that log ¥» is superharmonic, which also leads to the convexity estimate Eq. 1.5.

Theorem 1.4 Let 2 be a smooth bounded convex domain in R", n > 2 and u the solution
for the problem Eq. 1.2. If v = —logu is a strictly convex function, then the function

v = log ¥y = log (e_(’”'])" det Dzv)
satisfies the following inequality:
Apy <0 in S2.

Ma-Shi-Ye [13] also gave convexity estimates for the torsion problem Eq. 1.4. It is a
generalization of Makar-Limanov’s result in [15] to the higher dimensions. They introduced
the auxiliary functions

" 9det D%u

V3 = (=2) "udet D*u + (=2)7" ! winj,

ij=1 Ouij
and proved a differential inequality

AYz <0 mod (Virs).
1

n—1

Recently, the authors in [11] further obtained that /5" is superharmonic. For the har-

monic functions u# with convex level sets, Ma-Zhang [14] proved that (|Vu|"_3K )ﬁ is
superharmonic, where K is the Gaussian curvature of the level sets of u.

In geometric function theory and nonlinear elasticity, the superharmonic property for
the log of Jacobian determinant is important to study the diffeomorphism problem, see
for example in Iwaniec-Onninen [9] and Iwaniec-Koski-Onninen [10]. In higher dimension
case, Gleason-Wolff [8] studied the diffeomorphism for the gradient mapping of harmonic
function u, and the superharmonicity for the log | det D?u| is still the key ingredient in their
proof.

This paper is organized as follows. In Section 2, we give the proof of Theorem 1.2. The
main technique in the proof of Theorem 1.2 consists of regrouping terms involving third
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order derivatives and maximizing them in each group. In Section 3, using the same process
as the proof of Theorem 1.2, we prove Theorem 1.4.

2 Proof of Theorem 1.2
Firstly, we give the following elementary lemma.

Lemma 2.1 Let B be a (n — 1) x (n — 1) symmetric matrix, n > 2,x = (X1, -+ , Xp—1),
b= (b, ,by—1) € R ! and fx) = xBxT + 2bxT. If B < 0, i.e., B is negative
definite, then

f(x) < —bB~'pT.

Proof Since B < 0, the polynomial f(x) has a unique maximum point. At this maximum
point, there hold
2Bx" +2b" =0,
equivalently, xT = —B~!'5T . Hence
Fx) < (=B 'Y B(—B~'bT) 4+ 2b(—B~'bT)
= bB~'pT —26B7 0T = —pB DT

Now, we prove Theorem 1.2.

—ou

Proof Let u be the solution for the problem Eq. 1.1, v = e™**, @ > 27 forn = 2 or

1
v = u?n for n > 3. Then v is strictly convex from our assumption and satisfies the
following equation and boundary conditions.

IVol?
Av=m—1) 5 in 2\ {x,},

v(x0) =0,

and forn = 2,
v=1 onads2,
or forn > 3,
v(x) > +00 asx — 052.

For

Q= log(vzf”2 det D*v) = (2 — n?) logv + log det D?v,

we shall show that
Ap < 0. 2.1

In order to prove the inequality Eq. 2.1 at an arbitrary point x € 2, we will choose
the suitable coordinates at X, such that the matrix D?v(%) is diagonal. If we can establish
Eq. 2.1 at x under the above coordinates assumption, then go back to the original coordinates
we find that Eq. 2.1 remain valid. Thus it remains to establish Eq. 2.1 under the above
assumption that the matrix D?v(X) is diagonal. Because v is strictly convex, the Hessian
matrix (v;;) is positive definite. Denote A; = v;;(x) for1 <i < n, A = (A, A2,...,4,)
and o1 (1) = Av. Let (v'V) be the inverse matrix of (v; 7). From now on, all the calculations
will be done at the fixed point x unless otherwise specified.
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Take the first and second derivative of ¢, we have

(2 —n )v
¢ = ’ Z i,

k=1

and
2 — n?)(vv;; — v?) " "
Vi = 2 S A Z Mo — Z quvplvkliqui.
k=1 kil p.g=1
Hence
(2 _ ”2) (UAU _ |VU|2) $ kk k1l 2
Agp = = +Y v A) — Z v -

k=1 k,li=1

By using the equation Av = (n — 1) ‘V;’lz , we have

(Av) gk

B Vol UsUsk |W| vt
- (n—l)( . ) = —1)(22 )k

n
Usk Usk Us Uskk Us Uk Usk Us Uk Usk
= (Rt Yyt oy

s=1 s=1 s=1
Vo2 V|22
+(n—l)<—| |2 kk+2| |3 k)
v v
Moo Utk A0 VU VP
= -2k +2 LU R .
(n )< v + Z: v v2 v2 +2 v3

Therefore, from Eqgs. 2.2 and 2.3, we derive that

n 2
Vi Ui Ukki
A<p=—§:)lf]2”— 2: k” +2(n—1)§ .
v
ki=1 "k 15k,s,i<n k,i=1 k

k#s

2 n )
+(=n> +3n? 5n+2)| vl +222—k

2
P Ak v
no2 U Vg
ki kkz i Vkki
S Rl ey o
= 2
P Ikran M s VM
koti
Vo o1 v
+(—n3+3n2—5n+2) +2 ——=,
v2 1; Ak v2

2
the last inequality is due t0 >y 4 /2 % >0

@ Springer
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We claimthatV1 <i <n,

2 n
v Vi Z Ukki
Ai = Z % Z )»k];\l 2 =1 Ul )\kl

1<k<n k=1
ki

2 2
—n3 2 _ Vi 501
+(—n’ +3n S5n+2 +2
v2 i

< 0.
If the claim is true, we arrive at the conclusion that
n
Ap <) A =<0.
i=1

In the following, we shall show the claim. Taking derivative of the equation Av = (n —

Vol
1) =~ with respect to x;, we have

(Av); = (20 = D = 1 (1) =,

that is
n—1

Vini = (200 = Dy = 0109) = = Y v (2.4)
k=1

Applying Eq. 2.4 to A; , we deduce that, for 1 <i <n —1,

1<k<n-—1
k#i
Ttm) X
(L 2 kiU
A2 ik . L
1<k,j<n—1
k#j

n—1
T YR Y (S Y (NI YR (Y
— n— _— = n — —0 Vi
v Y W2 dita R

1 202 2(n — DA — o1 v?
(A% )2(n—l)k,-—01) U*lz+2(”— )—712
+(—n + 3n? —5n+2) +2

An v

2 2
o1(0) v’

-, 25

w02 (2.5)
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and

n—1
1 1 2 1
' ( S mn> Vi T3z 2L Vit

j=1 n m1<jk<n—1
k#j
n—1
Uy (n—Dr, —o1 1
Jj=1
1 (2( D )2 vrzl ey 1)Z(n — DAy — o1 v,%
——(2(n — —o01) =% n—-1)————-=
A2 " 32 An v?
+(—n3+3n2—5n+2)v—'21 +22ﬁ
v2 A V2
Therefore, we can view A; (1 < i < n) as a quadratic polynomial of x;; =
(V1175 V2205 * 5 V=) (n—1)i)-
Firstly, we prove the claim for i = 1 and the cases for 2 < i < n — 1 are the same
completely. Set x[1] = (vi11, V221, - - - , Vn—1)(n—1)1), A1 can be rewritten as

Al = x[l]le[Tu + Zb[l]x[jij +d.

Note that
—By = E| + F1,
where
El:diag{L P P |
A3 mr’ T2 M)
and
1
Fl:<i+i> .
A2 Mg : I
1
Denote
C = diag{)»l, 2 L, Ant },
\/1+2§—f \/1+2*;;‘

one can obtain that

Ci(=B)Cy = I + v,
where [ is n — 1 identity matrix and v} = /%2 + ﬁ(l, 1,---,1)Cy. Itis easy to see that

Bl < 0.
By Lemma 2.1, we get
Al < —b[l]B;Iba] +d[1]. 2.7
Denote Dy =1 + v[Tva, then
T
p-1__ ‘m"u
1 = 7>
1+ vl

-B;'=cipi'cy.
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Hence
- b[l]B;lb[Tl] = b[l]ClD;lclba] = b[l]ClDfl(b[l]Cl)T. 2.8)
On the other hand, let g = (1 + 2)‘” ) 2("12# — ”T;l From Eq. 2.5, we have
b (Lo D)+ ( 1)(1 ! )=
= L, n— —_— .
[1] 8 N PV »
Denote 71} = (ﬁ, cee ﬁ)cl, 2= %,then
n— g+m
_ V1
bi11C1 = (gvpy + (n — 1)’1[1])? (2.9)

Therefore, combining Eqs. 2.8 and 2.9, we deduce

-1, T
—bm By by,
2

= 7(gv i+ (0 — D) Dy (gvpy + (2 — D)
2

= v—z(gsz]Dl_lv[];] +2(n — l)gn[]]Dl_lv[YI] + (n — 1)2r][1]D1_]77[71]).

T
. _ vl .
Since D] Lyt ]2 , one can obtain that
I+|vnl

T 2
B ViV |V[1]|
PSS N PR 1L T
mDy vy = v T4 o2/ M 14 o 2
T T
Vi VI T v
1]D 77[1](1 72)])[ 1= 1 o2
1+ vl 1+ v
and
T T \2
D7y = (7= 1Y 2 -
i DL ) T T vl
[ [ = "l 1+ vy 2/ 1 1+ v ?
Then

—1,.T
—bpBy by

U Ml g UK. — )2y
2\& T4 P 1+ v 2 .

(77 1])
—(n -1 2.1
(n—1)? 1+|V[11|2) (2.10)

V2
1
_ o o vty - 9).
>(8 +( ) Il — l+|V[l]|2(( v — &)
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Hence, from Egs. 2.5, 2.7 and 2.10, we get

1

2 21)2
1,7 1
b[l]Bl blll (Az + )»1)\,1)(2(” DA (71) 2

Al

IA

2(n — A1 — o v%

2(n—1
+2(n— 1) .

—|—(—n3—1—3122—571—i-2)v—12
v2

o1(h) v}

2
+ A 02

L (= D - 2
= ——((n— Dy —8) —
1+ Jvpl? T T8 5

2
(o2 v
+((n — D2 + (1 — 1) 43— 5+ 2”71)17;' @.11)
1

An
I+23
By the definitions of vy, n[1) and g, direct calculation gives

2

((n = Doy, — 8)

n

1 A\ A2 A
- (1 27)—‘ (1 2—1) —1
4( + A )\.2< + M )Z

n j=2 _2 1

2
ot (n—2)(n— 3))

and

n

142 An
L+ v l? = 7—1(1 +2—)<
422 n/\ o

(1+2 ) Z ,+6—2n).

A

Denote p _1+2 fOI'2<j < n, then we get

o) <&
2 IA =S uj+3-n, (2.12)
1 X
=2
n—1 1
I 1? —1+Z =14+> —, (2.13)
_2 1 )L*J j=2 I'L]
((n = Doy, — 82 (2.14)

1 I\ A2 [ & "1 2
= Z(1+2A—)/\—;<Z/¢LJ—(n—1)2—'+(n—2)(n—3)> . (215
V= =M
and

142 A L "1
1+ vyy* = ,%( +2l)<zuj+2—+6—2n>.
4 X A P P
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We substitute Eqs. 2.12- 2.15 into 2.11 and obtain

2
(Z'}zzu,- — = DY+ (=2 - 3)) 2
V2

27:2/11]‘ + Z}}:zu%, +6—2n

n n 2

1 v

2 3 2 1
+((n—1) jngj—f—jgzuj—n +4n —8n—i—6>v—2

A < —

_ n?R(ua, -+, [hn) v
- L
domj + Z?:z,%j +6—-2nv
where
n 1 n n n 1
R(ua, -+, ptn) = (Z—)(Zm)—(n—z)zm»—(n—z)z—+<n—1)<n—3).
=M\ D = =M

Therefore, in order to prove
A1 <0,

we only need to prove
R(pz, -+, pun) = 0.

Fork =2,---,n, we have

dR | 1 & 1

=) ) Wt (=D — (-2

Ik P TR e My

1 1
=( Z —A—(n—2))—|-f2 n—2-— Z il

a<j<n M Hie 2<j<n
J#k j#k

Since forall 2 < j <n, u; > 1, we have

1 IR
Y —-m=-2<0, n-2- Y ;<0 and — <0.
2<j=n i 2<j=n itk

J#k J#k

Thus
R(pa, -+ pn) < R(, -+, 1) =0.
We finished the proof of the claim fori = 1.
Now we prove the claim for i = n. Set x[,) = (V114, V221, - - , Vu—1)(n—1)n), An Can be
rewritten as
A, = X[E]an[n] =+ 26 X[n] + din)-
From Eq. 2.6, one can derive that

By = (blnj)lfi,jgnfl’

where
1 1 2
bl — ——— — | — 4+ — )5,
i A2 (x; * /\,An> Y

_Bn:En+Fna

It is easy to see that
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where
E di { 1 L2 2 1 n 2 1 2 }
= diag| — -,
T T 2 R, T hi
and
1
1 1
F = 5 . (15 17 k] ])
YN
1
Denote . A N
Cn:diag{ ! , 2 e n—1 },
\/1+2% \/1+2§—j ‘/1+2“1
we have
Cn(=B)Cn =1+ v[{,]v[n],
where v, = i(l, 1,---,1)C,. Denote D,, = I + v[n] 1> then
o i Vi
Dn == - 72,
1+ v
and

-B,'=cC,D;'C,.
With Eq. 2.6, we get

v, [ (n = DA, — oy 1 1
b = 1 ek S | —D(—, -, —) .
[n] v |: )L% ( )+ )()»1 )\n—l)
Denote 7, = (/\1—], , /\;ﬁ)Cn,g =n—1- %‘,,then
v
b Cn = (Vi) + (1 = D) —
Whence, we deduce that
—1,.T
_b[Vl]Bn b[nJ
= b CaD; (b Cr)”
2 2 T
V([ <2 |V[n]| - NV
= 22— 4om—1g—
V2 (g T 2 D8R
(ﬂ[n]‘)[T])2
+(n —1)? 2—;1—127") 2.16
( )| ( ) 1+|V[n]|2 ( )

2
- U—;(g + (n = 1)?Inp* - ((r = Dmiaviyy = g)z).

1+ Iv[,,]lz

Denote ji; =1+ 2/\—){, for 1 < j <n — 1, by the definition of v,, n[,; and g, it is easy to
compute

,01) =
- =Z;¢,~+3—n, (2.17)
n ]:1

|n[n]|2=21+ m Z

Jj=1 A

(2.18)

tz‘._
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L n—1 1241
T J
NV = 7 = - = =
" }‘njzll—i-Z% 2 22}“]
~\2
((n - 1)’7[11]”[];;] - g)
—1 n—1 2
(n—1)2 n—1lw—| 1 3—n 1 .
— - —(n—1
(2 2,;1,-+2+2,“f(")
Jj=1 j=1
—1 n—1
n—1w—| 1 1 5 (n—3)(n—2))
= (- Yo—+-> i+ ,
( 2 g 2},=1 2
and
1 n—1 Az 1 n—1 n—1 1
L+l =1+ = ’A.=7(Zﬂj+27+6—2n>.
Mool AT i
By Lemma 2.1, we have
1 2 V2
—1,T
Ap < —b B, by, — F(z(n — DAy —o1) U%
n
2(n — DAy, — oy V2 v2
—|—2(n—1))\—§+( n® + 3n? —5n+2)—2
n
+201v2
A 02

Therefore, combing with the above Egs. 2.16-2.22, we get

2
(z';;}/:aj—<n—1>z';;}é_+<n—z><n—3>) p
2

Ap = — n— 1~ n—1
Z /+Z] 1;L +6—2n
1 n—1 2
((n—l) Z——{—Zuj—n + 4n? —8n+6)
Jj=1 j=1
_ n*R(fi1, -+, fin1) vy
02’

pIPRl TR Sl SR
where

— n—1

J

n—1 n—1
R(it1, -, fin—1) = (Z )(Z“’>_(n_2)ZV-J‘_(”_Z)Z%"‘(H—
Jj=1 j=1

j=1
Analogously, we can also get R(ft1, -, ftn—1) < 0, then

Ap 0.

This completes the proof of Theorem 1.2.

(2.19)

(2.20)

2.21)

(2.22)

D(n—3).

O
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Remark 1 In the proof of Theorem 1.2 above, if we rewrite the formula Eq. 2.4 as

v:
viii = (200 — DA —o1(V) — — E Vkki »
v 1<k<n
k£

and eliminate the v;;; term in the expression of A;, it can be processed in the form of A, in
Eq. 2.6.

3 Proof of Theorem 1.4

Now, we give the proof of Theorem 1.4. The process of the proof is similar to that of
Theorem 1.2.

Proof Suppose that u > 0 is the solution for the eigenvalue problem Eq. 1.2 with A > 0
being the first eigenvalue. Set v = — log u, then v satisfies the following problem

Av=2x+|Vv]®> in £,
v(x) = +00 asx — 052.

Let ¢ = log(e~ "DV det D?v) = —(n + 1)v + log(det D?v), we will prove that
Ap < 0. 3.1)

In order to show inequality Eq. 3.1 at arbitrary point x € £2, we choose the suitable
coordinates at ¥, such that the matrix D?v(x) is diagonal. Because v is strictly con-
vex, the Hessian matrix (v;;) is positive definite. Let (v'7) be the inverse matrix of (v; i)s
(A, A2, .oy An) i= (11, V22, ..., Uyn)(X). From now on, all the calculations will be done
at the fixed point x.

By taking first derivatives of ¢, we have

n
pi=—m+ Dv; + Z VM ug;. (3.2)
ki=1

Differentiating Eq. 3.2 once more, we get

n n
Ap =—(n+1)Av + Z vkl(Av)kl — Z vkpv"lvk”qu,-.
k=1 kol prgi=1

Using the equation Av = A + |Vv|?, we deduce

n n

1 n
D A =Y G Vo) =24v+2 ) v,

k=1 k=1 k,s=1

Vkks
A
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Whence

n 2
_ Vkki Vi
Ap = (1 —n)Av+2 E v; . E —

Ak A
ki=1 "k = MM
Vkki Ukkz vl%ki
= (1-n)(A+|W|)+2Z —E: -2y e
Pt B i I<ki<n "KM
ki
2
_ Z Vkii
A
1<k Li<n "KM
ki I kA
v n U U2
kki kkz kki
< A -n)Vu*+2 - - —.
>yt oy M
k,i=1 k,i=1 1<k,i<n
ki

Denote

2
U U
A= (1 —n)v? +2§ vkk’—} ki _ g E:ﬁfor1<z<n
k=1

I<k<p "k
ki
We will claim thatV 1 <i <n,
A; <0.

From this claim, we have

=

Ap <Y A <0,
i=1

and complete the proof of Theorem 1.4.

In the following, we shall show the claim. Taking derivative of the equation Av = A +

|Vv|? with respect to x;, we have

n
(Av)i =2 Z Vs Usi

s=1

which implies

n n—1
Unni = 22 UsUsi — Z Ukki -
s=1 k=1

Applying Eq. 3.3to A; , we deduce thatfor 1 <i <n — 1,

i 1gj=n—1

2 n—1 2
Vi 1 2 2 _ (L 2
Aj= —35 > (;\2 + Aixj>vjji (Ag + A,-A,,)( ‘21 U./Jt)

]:

n—1
1 2 W oyl ”m v;
+4(E + l[kn)vl)"l Z] v]]l +2U, Z} 1 j 2 : Z v/]l

—4v; F(l +2M> + 4025 + (1= )7,

(3.3)

(3.4)
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and
n—1 n—1 1 1
= _Z<}\2 e =) (va) +2an( ot ) v
+(1 — n)vn. 3.5)

From Egs. 3.4 and 3.5, we can view A; (1 < i < n) as a quadratic polynomial of x[;; =
(V1175 V2215 5 Vin—1)(n—1)i)-

Firstly, we prove the claim for i = 1 and the cases for 2 < i < n — 1 are the same
completely. Set x(17 = (vi11, v221, "+, Vm—1)(e—1)1)> A1 can be rewritten as

Al = x[1]B1x[T1] + 2[9[]])6[7;] +d.
It is easy to check that

—By = E| + F1,
where
El:dmg{i .2 Ly 2 }
AR maT T2 M
and
1
F1=<i+i) : (1,1, 1).
A2 Mg : 7
1
Denote
C = diag{)q, 2 Al },
n—1

Jir2 o ik

Ci(— B])C1—1+U VI

where v[j] = /)%2 + M%n(l, I,---, 1)Cy. Itis easy to see that

one can obtain that

Bl < 0.
By Lemma 2.1, we get
A1 < —byy By bl +dpy. (3.6)
Denote D =1 + v[Tva, then we get
T
Vr1Vr1
Dflzl— [1][]2’
1+ |yl
and
-B'=cp'Cy,
whence
_ _ 1
_bUJBl lb[Tl] = bUJC1D1 l(blljcl)T = b[lJCI( 1—|[|]7|)(b[1]C1) . 3.7

From Eq. 3.4, we have
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3+2 ™

Letﬂ[11=<% )C1 and g = ——21,
17 9 )\4 9 l+2/\«ll
v A

then

b Cr = (gvpiy + nupvi- (3.8)

Combing Eq. 3.7 with Eq. 3.8, we derive

T
— nvau
— by By lb[Tl] = U%(8W11+’7111)( 714” E )(gV[1J+77[1J)
2 T \2
o 2 vl vy, > vy
= +2 + Inml- — ——= ) 3.9
1( 1+ Jvy? 1+ v l? . 1+ v l?
1
_ 2( 2 2 T 2
= vilg + Il — ——=mmv — & )
] [ 1+|v[1]|2( v — 8)
By the definitions of vy} and (1), direct calculation gives
1 An—
U”]:\/A A (M’ /7 = lx )
1An 1+2}»2 1+2X;1
and
1 1
1]=<1, =" = )
n—1
,/1+2ﬁ ,/1+2M
Denote 1 =1+ 2%, for 2 < j < n, we deduce
n—1 1 n—1 1
P =1+ ——- =1+ —, (3.10)
j=2]+271 j_zl’l/]
-1 2
M\ (AN 12
e = 1 (1) (S48
SVALE §1+2*—’ A
122
_ ZA,,( ) Zu,+2—+6 2n 3.11)

j= 2

and

12 (Y 3424 \2
iy — 8)° = ( +— (M + E ! )— z )
A2 A A n
! L2 142
1 An\ A2 L 2
- Z(Hle)ﬂ -3 n=3) (3.12)
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Inserting Egs. 3.9- 3.12 into 3.6, we finally obtain

1 2
2 A o= s (o))
1 < vilg +Inml T+ vl nuviy — 8

)\2
— 4y 7;(1 +2—)—|—4v]——|—(1 —n)v?
n

2

n
1
— + —+2—ni|v12
[ > 2#1"‘2—2*"‘6 2n JZZ;“J'

s M),

2
Vi
= —; R(ua, - --
Zj:2Mj+Z_2# +6—2n
where
n 1 n n n 1
R(ua, -+ ) = (Z—)(Zm)—(n—mzw—(n—az—+(n—1)(n—3).
R A =2 = M

By the argument in the proof of Theorem 1.2, we can get R(u2, - - -

have
A <0.

Now we prove the claim for i = n. Set x[,) = (V11,, V224, - - -

rewritten as

An = X{y BaxXin) + 26 ¥ + dim

From Egq. 3.5, one can derive that

B, = (b;l/')lfi,jfn—lv

, un) < 0. Hence, we

s V(n—1)(n—1)n)» Ay can be

where ] ] 5
bl = —— — (7 + 7)5,’,’.
R A I
It is easy to check that
_Bn = En + Fl’ls
where
_di { 1 L2 2 1 n 2 1 2 }
— la 9 st 9 ’
En=degl a2 Yo e T
and
1
1 1
Fn = )\‘7% E (15 17 ’ ])
1
Denote N N N
C, = diag{ ! , 2 R n-l }
\/1+2§—i \/1+2§—j / Aat
we have
Cn(=By)Cp = I + vy,
where vy, = 3-(1, 1, -+, 1)C,. It follows that

-B '=cC,D,'Cy,
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T
where D, = I + v vy and D' =1 — 1?;1;1:,[:;2 By Lemma 2.1, we get
An < —bpuy B, bl + din. (3.13)

From Egq. 3.5, we see that

by = ! (1 1)+ ! !
frd v —_— . e . _—, .o . .
[n] " An A An—1

Denote 1, = (% cee, ﬁ)cn, then one can obtain that

b[n]Cn = (V[n] + N[n)) Vn-
Therefore

— by By, bl = bCa Dy (b Ca)”

2 T T \2
of vl N1V 5 vy, >
= v +2 + ) (314
"(1 + [vpa 2 1+ [vpl? Xl 1+ [vpl?

2
3 Ovy = D?).

1
2( 2
vo(1+ -
n |77[n]| 1 |U[n]|

By the definitions of vy} and 5[, direct calculation gives

Al An—1

1
Vin] = — ;
o \ 1422 J1+28

and

1 1
r][i’l]: T — "y T .
/1424 J1+2%t

Denote fi; =1+ 2%{ for 1 < j <n — 1, then we compute

n—1 1 n—1 1
> =Y —— =Y =, (3.15)
I e v R
1= n—1 1221
T J
My = 5~ D 5 = 32 (3.16)
)\njzll-i—Zi 2 2j=llL]
and
1 n—1 )\2 1 n—1 n—1 1
Ll =1+ —L—= > a+Y —+6-2n|. (317
Mo Ao PRy
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Inserting Eqs. 3.14-3.17 into 3.13, we finally get

An < —bpB, bl + (1 —n)v;
1
2 2 T 2
= 1 - -1 11— )
vn( + 101 T+ vl MV — D"+ 1—-n
1 2
n—1 1
(_2121E+n—3> —1 1 s
= T on—1 ~ n—1 1 +ZT+2_H Un
Z]=1M1+Z]=1E+6—2n j=1 Mj
2 o )
= n—1 R(H’la"' ’/"l’ﬂfl)7
YUl Y R H6—2n
j=1"J i=1 M j
where
n—1 1 n—1 n—1 n—1 1
Ry, i)=Y = | Do |- Y j—(n=2) Y —+mn—1)(n-3).
= )\ =1 = M
Analogously, we can also get R(/ll, -+, ftn—1) < 0. Therefore
A, <0.
This completes the proof of Theorem 1.4. O

Remark 2 In the proof of Theorem 1.4 above, if we rewrite the formula Eq. 3.3 as

n
Vi =2) UUsi — ) Ukkis
s=1 1<k<n
ki
and eliminate the v;;; term in the expression of A;, it can be processed in the form of A, in
Eq. 3.5.
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